TECHNICAL INFORMATION #### **DESIGN & CONSTRUCTION** **ALWAYSE** ball units are a multidirectional, material handling system, manufactured from high quality materials in our Birmingham factory. They consist of a large load-bearing ball which sits upon many small balls encapsulated in a hemi-spherical cup. The housing can contain a seal to clean the load ball as it rotates. The design greatly reduces friction and allows heavy loads to be moved with a minimum of effort. Our ball units may be used at any orientation but deviation from the vertical may result in a reduction in the stated load ratings quoted in this catalogue. # **FIXING METHODS** There are various methods of fixing Alwayse ball units. A wide range of fittings enable them to be used with various different materials. Fixing clips are available for most designs - see pages 30 & 31. #### **MATERIALS** | Туре | Load Ball | Support Balls | Housing | |------|-----------------|--|---------------------------------------| | 13 | Carbon | Carbon | Carbon Steel | | | Steel | Steel | Bright Zinc | | | 60-66RC | 60-66RC | Plated | | 14 | Nylon
66 | Stainless Steel
AISI 1420
52-58HRC | Carbon Steel
Bright Zinc
Plated | | 15 | Stainless Steel | Stainless Steel | Stainless Steel | | | AISI 420 | AISI 420 | AISI 304 | | | 52-58HRC | 52-58RC | SelfColour | | 16 | Stainless Steel | Stainless Steel | Carbon Steel | | | AISI420 | AISI 420 | Bright Zinc | | | 52-58HRC | 52-58RC | Plated | **ALWAYSE** ball units are available in various materials. The material required for your ball units should be quoted when ordering - see page 3 for ordering details. #### Lubrication Each unit is pre-lubricated during manufacture and normally does not require further attention. In certain instances we will advise on lubrication. Greasing or oil points can be incorporated in some units. ## Cleaning For cleaning use a suitable agent such as AC90 or WD40. Please consult Technical Support for advice. Most designs have dirt exit holes incorporated in the bearing cup, or these can be added on request. ## **Shock Loads** When calculating loads, consider the possibility of impact caused by incorrect levels. Spring loaded units will reduce wear and tear if there are regular shock impacts. Shock loading can also be reduced by fitting compressible pads. Ball units can also be made retractable by other means, such as pneumatic or hydraulic cylinders, cams or levers. They can be programmed to operate in sequence. All stated loads in the catalogue are dynamic loads. # **Self Levelling** Can be achieved by fitting rubber pads. This reduces excessive loads on just a few units. Details on request. ### **Temperature Range** Min. -30°c to max. +70°c continuous, or +100°c intermittent. Special seals may need to be fitted to suit extreme conditions. In clean conditions and without seals +150°c to +200°c are possible, using Type 15 units at reduced loads. # **Conveying Speed** Maximum recommended conveying speed is 1 metre per second for steel load balls and 0.25 metres per second for nylon. #### Seals These help resist ingress of dirt and swarf. They can be omitted on request. Woollen felt seals fitted as standard. # **Breakaway Coefficient of Friction** The average breakaway friction for new ball units containing steel balls in a good working environment is 0.01 to 0.015 (1% to 1.5% of the load) and 0.02 to 0.025 (2% to 2.5%) for units with felt seals. ### **BALL TABLES** Red arrows indicate ideal movement. Diamond Pitch **Elongated Pitch** Elongated Diagonal Pitch Vee location # **QUANTITY CALCULATION** The weight of the article to be conveyed should be divided by 3. The result will give the maximum load any single ball will bear. On any accurately levelled or flexible surface, a number greater than 3 may be used. The surface hardness and condition of the article should be considered to avoid ball unit penetration. ### Spacing The pitch is calculated by dividing the narrowest dimension by 3.5, i.e. if the narrowest dimension is 350mm divided 3·5=100mm pitch bv between ball centres. This ensures 3 ball units are always beneath the narrowest dimension of the load at any one time.